Philippine News Item

Effect of Polymer Amendment on Hydraulic Conductivity of Bentonite in Calcium Chloride Solutions | Journal of Materials in Civil Engineering


Abstract

Hydraulic conductivity of polyanionic cellulose (PAC)–amended bentonite (PB) in calcium chloride (

CaCl2

) solutions was investigated to access its chemical compatibility in vertical cutoff walls application. PB was synthesized by mixing conventional bentonite (CB) powder with PAC (2% dry weight). The specific gravity (

Gs

), liquid limit (

wL

), pH, swell index (SI), and cation exchange capacity (CEC) of CB and PB were measured, and hydraulic conductivities and microstructures of the PB and CB filter cakes were evaluated by performing modified fluid loss (MFL) tests and scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS) analyses, respectively. The results showed that PB had higher

wL

, SI, and CEC but lower

Gs

and pH than CB; in particular, PB possessed higher SI in

CaCl2

solution as compared to CB. Increase in the applied overall pressure and decrease in the

CaCl2

concentration resulted in a decreased hydraulic conductivity for both PB and CB. However, the hydraulic conductivity of PB was found to be one to two orders of magnitude lower than that of CB when exposed to the same

CaCl2

solutions, indicating superior chemical compatibility of PB. SEM-EDS image analyses demonstrated that polymer formed a three-dimensional net structure between bentonite particles, which could clog the intergranular pore space, resulting in a narrow and tortuous flow path for liquid and low hydraulic conductivity.



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *